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Abstract—The dependence of critical Rayleigh numbers for buoyancy-driven convection on the size of the

domainis investigated. The method of parameter differentiation is used to establish monotonicity conditions

for the Rayleigh number-geometry dependence for axisymmetric convection ina cylindrical container and for

three-dimensional convection in a rectangular box. The dependence of the critical Rayleigh number on the
Nusselt number is also studied.

NOMENCLATURE

d gradient defined by equation (27)

F vector defined by equation (35)

g magnitude of acceleration of gravity
I} heat transfer coefficient at free surface

k thermal conductivity of liquid

L matrix operator defined by equation
(3

L, L, dimensionless horizontal distance

variables in x, y directions for
rectangular box

l height of cylindrical liquid layer

M matrix operator defined by equation
(28)

Nu Nusselt number, hl/k

P, dimensionless modified pressure

P} d0P,/0L,

Q vector defined by equation (26)

Q* ¢Q/oL,

R radius of cylindrical liquid layer

(Ra), critical Rayleigh number defined by

equation (15)

(Ra), critical Rayleigh number defined by
equation (16)
r dimensionless radial distance variable

U, Vo, W, dimensionless velocity perturbation
components for rectangular geometry

Yo dimensionless velocity perturbation
vector for rectangular geometry

vE dvo/0L,

Wo vector defined by equation (2)

X, .2 dimensionless coordinate variables for

rectangular geometry
z dimensionless axial distance variable
for cylindrical geometry

Greek symbols
o thermal coefficient of expansion
B I/R
V2 Laplacian

0o dimensionless temperature
perturbation

K thermal diffusivity of liquid

v kinematic viscosity of liquid

Yo dimensionless stream function
perturbation

1. INTRODUCTION

ONE oF the more important aspects of the study of
buoyancy-driven convection in bounded domains is
the dependence of the critical Rayleigh number, (Ra),,
on the size of the fluid container. In general, it is
reasonable to expect higher values of (Ra), when the
lateral walls are closer together since the lateral
boundaries can severely inhibit convective motion,
thus introducing a stabilizing effect. Indeed, Ostrach
and Pnueli [1] and Jennings and Sani [2] have proved
that the critical Rayleigh number should be a
nonincreasing function of the size of the domain for a
fluid container with rigid, conducting walls. The
calculations of Charlson and Sani [3] for a cylindrical
container and of Jennings and Sani for a rectangular
box are in accord with this prediction. However, the
change of (Ra), with the size of the domain is not
necessarily monotonic when, for example, the side walls
of the container are insulating rather than conducting.
This has been illustrated by the calculations of
Charlson and Sani for a cylindrical geometry and of
Catton [4] for a rectangular geometry. In both
investigations, local maxima were observed in plots of
the critical Rayleigh number vs aspect ratio for the case
of insulating sidewalls.

The general lack of monotonicity in the geometry
dependence of the critical Rayleigh number com-
plicates the interpolation of computed Rayleigh
number—aspect ratio results. Consequently, it is of
interest to sce if some combination of (Ra), and the
aspect ratio does change monotonically, since the
derivation of such a monotonicity condition will of
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course facilitate utilization of numerical results for the
geometry dependence of the critical Rayleigh number.
The purpose of this paper is to apply the technique of
parameter differentiation to illustrate how a monoto-
nicity result can be formulated for the (Ra)y-aspect
ratio dependence for a given geometry. Such a_result
can be derived for any particular eigenvalue of the
linearized convection problem and, hence, necessarily
holds for the principal eigenvalue, the critical Rayleigh
number. We also illustrate how the method of
parameter differentiation can be used to deduce the
dependence of the critical Rayleigh number on a
boundary constant, in this case, the Nusselt number.
The method used here follows the approach used by
Joseph [5] in a study of the parameter and domain
dependence of eigenvalues for elliptic partial differen-
tial equations.

In the second section of this paper, the parameter
differentiation technique is used to derive a geometric
monotonicity result for the critical Rayleigh number for
axisymmetric buoyancy-driven convection in a
cylindrical container. The monotonicity condition is
illustrated using the numerical results of Charlson and
Sani [3]. In the third section of the paper, a geometric
monotonicity result is derived for 3-dim. buoyancy-
drivenconvectioninarectangular box,and thisresultis
illustrated using the calculations of Catton [4]. Finally,
in the fourth section of the paper, a monotonicity result
is derived for the Nusselt number dependence of the
critical Rayleigh number for axisymmetric convection
in a cylindrical container with a free surface. This
development is effectively a rederivation of an
important result derived previously by Joseph and Shir
[6]. The monotonicity condition for the Rayleigh
number-Nusselt number dependence is illustrated
using calculations presented by Vrentas et al. [7] for
buoyancy-driven convection in a bounded cylindrical
geometry.

2. DOMAIN DEPENDENCE IN A CYLINDRICAL
GEOMETRY

In this paper, we shall consider buoyancy-driven
convection in a Newtonian liquid layer contained in a
container of finite size. All physical properties with the
exception of density are constant, and viscous
dissipation is assumed to be negligible. Furthermore,
we introduce the usual Boussinesq approximation that
the density in the body force term is a linear function of
temperature. In all cases considered in this paper, we
shall suppose that there are insulated rigid lateral walls
and a constant temperature rigid bottom surface. In
this section, a liquid layer of radius R and height [ is
contained in a cylindrical vessel. Two types of
boundary conditions for the top surface are considered.
In one case, the top surface is a rigid wall at constant
temperature. In a second case, the top surface transfers
heat, but not mass, to a constant temperature inviscid
gas phase, and the heat exchange between gas and
liquid is described using a constant heat transfer
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coefficient. Finally, we limit the analysis to axisym-
metric velocity and temperature fields. For this
problem, the origin of the cylindrical coordinate system
is located at the top surface, and the unit vector along
the z axis is parallel to the gravitational field.
Furthermore, the dimensionless temperatureis O at the
bottom surface and 1 in the gas phase or at the top
surface.

Under theabove conditions, the dimensionlesslinear
equations which govern the perturbations in stream
function and temperature can be written as follows:

Lwy = "0. (1

Here, wy is a two-component vector

w=wﬂ 2

L is the matrix operator

BE* 10

r’(Ra)y T rer
L= | "k SN

li _(1+Nu)V2
rér Nu
and E? is given by

? 10 8

El=S———+-5- @)

orr rér 0%

For a free surface with a constant heat transfer
coefficient h, the boundary conditions for stream
function and temperature perturbations can be written
as follows:

voo, Lot _ 9
o= Y -

r=0, 0<z<p, (5

r or o’
Yo =0, aEz'°=o, r=1, 0<z<f, (6
or
%
Yo =0, 2=0, z=0, O<r<1, (7
0z
Vo=0, Yo_0 zop o<r<1,
oz
%=0, r=0, 0<z<f, ()]
or
o _ , r=1, 0<z<§, (10)
or
¢o Nu
a—z"=700, z=0, 0<r<l, (11)
0,=0, z=4, 0<r<l1. (12)

For a rigid, conducting top surface, equations (7) and
(11) are replaced by the following equations:

Vo =0, G—%=O, z=1i, O<r<l1, (13)
0z
0,=0, z=0, 0<r<l. (14)

The radius R is used as the reference length in forming
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the dimensionless distance variables, and /! is used as
the reference velocity and I as the reference length in
forming the dimensionless stream function.

Inthe above equations, the critical Rayleigh number
is defined as

PaATyg
VK

(Ra)o =

(15)

where, for the case of a free surface with a Robin
boundary condition, AT is the critical temperature
difference between the bottom surface and the gas
phase. It is the usual practice to define a Rayleigh
number, (Ra),, using the temperature difference across
the liquid layer in the conductive state. The two
‘Rayleigh numbers are related by the expression

1+Nu
—(Ra),

and, clearly, the difference in the definitions disappears
‘for a conducting top surface where Nu — oo. Although
‘either definition of the Rayleigh number can be utilized,
“we introduce the definition given by equation (15) here
because we believe that it is generally more useful in
arriving at a physical interpretation of stability results
for this particular problem [7]. In particular, a finite
value of (Ra), for Nu = 0is somewhat artificial since it
requires an infinite temperature drop across the entire
system.
For the above problem, it is convenient to define the
following inner product of two real, vector-valued
functionsa and b: :

£ 1
(a,b):j J- a*b rdrdz.
0 Jo

Relative to this inner product, it can be shown in the

(Ra), =

(16)

(17
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Since the RHS of this equation and the integral on the
LHS are positive, we deduce the following inequality
for the geometry dependence of (Ra),:

ST(Ra)-B~*
ARAB™ _
ap
Since f=1I/R=1/y, where y is the aspect ratio,
equation (22) can also be written as

0[(Ra)o/4]
]
The above monotonicity condition is valid for each and
every eigenvalue of the system and thus holds for the
principal eigenvalue also.

This monotonicity result can be illustrated using the
computations of Charlson and Sani [3] for axisym-
metric convection in a rigid cylinder with conducting
top and bottom surfaces and an insulating lateral wall.
InFig.1,thelack of monotonicbehavior for the (Ra), vs
B curve is evident as is the adherence of the numerical
results to the condition stated in equation (22).

22

(23)

3. DOMAIN DEPENDENCE IN A
RECTANGULAR GEOMETRY

In this section, we consider buoyancy-driven
convection in a rectangular box with rigid walls,
conducting top and bottom surfaces, and insulating
lateral boundaries. For this problem, the origin of the
coordinate system is located at the bottom surface, and
z is the vertical direction. The unit vector in this
direction is antiparallel to the gravitational field, and
the dimensionless temperature is 0 at the top surface
and 1 at the bottom surface. The dimensionless linear
equations which describe the perturbations in the
velocity and temperature fields can be written as

usual way [3] that the system described by equation (1) 1
and the corresponding boundary conditions is self- MQ"(—W“PO =0 (249
adjoint. To investigate the dependence of (Ra), on f§, we °
differentiate equation (1) and the associated boundary Vevg=0 25)
conditions with respect to . This operation yields where Q is a four-component vector
Lw,=K, (18) U,
AN 1)
Yo = , 2
ap Q W, 26)
W, = , (19)
30, 0o
L B
B -] 3 3 3 ~4
180, §0In(Ra)y 4 + 4p My 1 3y MYy
K r ér op B§ * rYRa), |8r?0z®> r éréz? = 0z* 0
- _2(1+Nu) 820,
L " Nup o2

and the vector w, obeys the same boundary conditions as w,. The solvability condition for equation (18) takes the

following form:

B el(Ray ™™ coo _4p
“Ra), P f J Vo 492 =Ry L
200+ Nu) ([ Nu
~Nih 5 {L T[OO(r ,0)]° dr+-[ L

(1)
3 v

4p3
(Ra)o

J Jl 1(@%) drdz. (21)
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FiG. 1. Illustration of geometric monotonicity condition for cylindrical geometry using computations of
Charlson and Sani [3].

d is a four-component gradient

ox
0
d=| dy |, 27
d
0z
— 0 p—
and M is the following matrix operator:
[ v? B
0 0
(Ra)o
V2
0
M= (Ra), (28)
2
0 v
(Ra)o
[ o 0 1 v

Also, the boundary conditions for this problem can be
written as follows:

vo=0 on 2=0,1, x==%L,, y=4L,, (29)
0,=0 on z=0,1, (30)
0,
6_0=() on x= -|-Ll, (31)
Ox :

a0,

oy =0 on y
The height of the rectangular box is used as the
reference length in forming the dimensionless distance
variables, and the reference velocity is equal to k
divided by the height of the box.

Wenow study whateffect changing the size of the box
in the x direction has on the critical Rayleigh number.
Differentiation of the above set of equations and
boundary conditions with respect to L, gives

+L,. (32)

*—_—_dP5=F
MQ Ra), o =F (33)
1 U,
oy¥ —
V= (34)

where P¥ = 0P,/0L,,Q* = ¢Q/0L,,v§ = dvo/0L,,and
F is the lollowing four-component vector:

2 3, 1 op,
L(Ra), x> L,(Ra), ox
2 8%,
Fe L,(Ra), 0x*® 35)
0o &(Ra), 2 B,
" (Ra)y 0L, ' Ly(Ra), ox2
2 8%,
8 Ly ox* i
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Since Q and Q* clearly obey the same boundary
conditions, it is easy to show in the usual way [3] that

(Q*MQ) =<Q,MQ*) (36)
where we have defined the following inner product of
two real, vector-valued functions a and b over the
volume V of the region:

(a,b):j a-bdv. 37
14

Also, it can be shown using equations (25) and (34) that

Po 2y g,

L, ox (38)

<Q,dPg)>—<Q*,dPy) = f

By forming appropriate inner products from
equations (24) and (33) and by using equations (36) and
(38), it follows immediately that

P
_0% dv
L1 Ox

0=(QF)+—">—— (39)

This result can also be written as

0= -2 _ o \?
L,(Ra)y ( Jy] \ 0x
FYACING AT
=2 —2) |av
+(ax) +( ox )
2 P, 0,
_ —O%dv-=
L(Ra), _[V Uo 5 ¢ (6x) av

d In(Ra),
——— | O0,W,odV
oL, J, °°

and, by further utilization of equation (24), we finally
arrive at

(40)

dl(Ra)Lt] _ N

6L1 D’ “1)
2 2 2
e )+ o2
o)
o (2 (2o
—2L3 L [VU,-VU,]1dV, 42)
= L 0,20, dV. (43)

Since all integrals in both N and D are negative, it -

follows that

ORALT] _

3L, (44)

Anequivalent partial derivative for a change of the size
of the box in the y direction can of course also be
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formulated. Although the monotonicity conditions for
the axisymmetric and fully 3-dim. problems are
effectively the same, there are obvious differences in the
methods of derivation.

This particular monotonicity result can be il-
lustrated using the calculations of Catton [4] for
convection in a rigid rectangular region with perfectly
conducting top and bottom surfaces and insulating
vertical walls. It should be noted that Catton found
critical Rayleigh numbers which were based on the
existence of finite rolls in the rectangular region.
Davies-Jones [8] has shown that finite rolls which are
aligned perpendicular to insulating, rigid sidewalls are
not an exact solution to the linearized equations. We
shall suppose here that the values of (Ra), reported by
Catton are sufficiently accurate for the purpose of
illustrating the monotonicity result. The absence of
monotonic behavior for the (Ra), vs L, curve is
illustrated in Fig. 2. It is also clear that the computed
results adhere to the monotonicity condition given by
equation (44). Interpolation of the numerical results of
Catton to form the (Ra), vs L, curve presented in Fig. 2
was carried out using the above monotonicity result. It
is evident that meaningful interpolation of the
numerical data for this case is made possible only by
utilization of the inequality presented in equation (44).

4. NUSSELT NUMBER DEPENDENCE

Inthefinal section of this paper, we study the Nusselt
number dependence of (Ra), for the axisymmetric
buoyancy-driven convection problem considered

a8 : , r T r

(Ra)y x1073

35 . 1 .

Fi1G. 2. Illustration of geometric monotonicity condition for

rectangular geometry using computations of Catton [4] with

2L, = 0.125. Solid circles represent reported values of the
critical Rayleigh number.
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F1G. 3. Illustration of monotonicity condition for Nusselt number dependence for cylindrical geometry using
computations of Vrentas et al. [7] with R/l = 8.

above. The dependence of (Ra), on Nucan be examined
by differentiating equation (1) and the corresponding
boundary conditions with respect to Nu. This
procedure leads to the system

Lw, =N, 45)
o
dNu [A] 46
w, = = s
b 50, B )
dNu
1 80, o(Ra),
R or 8Nu
N= r(Ra), or 1 @)
10y (1+Nu) d Nu
r & Nu dNu\l+Nu

and the vector wy, has the same boundary conditions as
w, with the exception of the temperature condition at
z = 0 which becomes

oB

z B B

Now, if we form the following inner product
expression:

(48)

<w0) wa) - <wb1 Lw0> = <W0, N> (49)
we can derive the result
R 1
o BNu [0o(r,0)]? dr
1+Nu | (Ra)y Jo >0 (50)
O Nu N B )

1
J J wo%dr dz
o Jo or

Itis evident that the monotonicity condition applies
to (Ra),, and it also follows from equation (50) that
&(Ra)o/d Nu need not have the same sign for all Nu. As
Nu — 0,auniform temperature exists in the liquid layer
in the conductive state, and a large temperature
difference [large (Ra),] is necessary for cellular
convection. Although there will be a general decrease of
(Ra)yas Nuincreasesaway from Nu = 0,itappears that
aminimuminthe(Ra), vs Nucurvecannot beexcluded.
Indeed, calculations carried out by Vrentas et al. [7] for
this particular geometry with R/l = 8 show that thereis
aminimumin the (Ra), vs Nu curve near Nu = 10, asis
illustrated in Fig. 3. This figure also shows adherence to
the monotonicity condition given by equation (50).

Joseph and Shir [6] used an energy method to
deduce that the stability limit increases monotonically
with the Nusselt number. Since there are no subcritical
instabilities for - the type of convection problem
considered here, the conclusion of Joseph and Shir is
valid for linear theory, and equation (50) is thus
equivalent to their monotonicity condition. We have
simply presented an alternative derivation based on
parameter differentiation and the theory of differential
operators. Finally, we note that exact calculations
based on the linear equations for fluid layers of infinite
horizontal extent [9, 10] appear to represent the first
instance where it is shown that (Ra), increases
monotonically with increasing Nu.
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DEPENDANCE DES NOMBRES DE RAYLEIGH CRITIQUES
VIS-A-VIS DU DOMAINE

Résumé—On étudieladépendance des nombres de Rayleigh critiques pourla convection naturelle vis-a-vis de

la taille du domaine. La méthode de différenciation du paramétre est utilisée afin d’établir des conditions de

monotonie pour la dépendance nombre de Rayleigh-géométrie dans le cas de 1a convection axisymétrique

dansunréservoircylindriqueetdanslecasdelaconvection tridimensionnelle dans une boite rectangulaire. On
étudie aussi la dépendance du nombre de Rayleigh critique vis-a-vis du nombre de Nusselt.

DIE ABHANGIGKEIT DER KRITISCHEN RAYLEIGH-ZAHL VON DER RAUMGROSSE

Zusammenfassung—Die Abhdngigkeit der kritischen Rayleigh-Zahl bei freier Konvektion von der GréBe des

betrachteten Raumes wird untersucht. Um Monotonititsbedingungen fiir die Abhéngigkeit der Rayleigh-

Zahl von der Geometrie bei achsensymmetrischer Konvektion in einem zylindrischen Behalter und bei

dreidimensionaler Konvektionin einem rechteckigen Behilter herzustellen, wird die Methode der Parameter-

Differentiation angewandt. Die Abhéngigkeit der kritischen Rayleigh-Zah! von der Nusselt-Zahl wird
ebenfalls untersucht.

BJAUSIHUE PA3MEPOB MCCAEAVEMOW OBJIACTH HA KPUTHYECKUE 3HAYEHHS
YHUCIA POJIEA

AnnoTauus—HccaeayeTcs 3aBHCHMOCTb KPHTHYECKHX 3HaueHHii yic1a Pases ot pasmepos obnacti npn
KOHBEKIIHH 32 cYeT MoabeMHoii cHabl. C 1elbio onpeaesenis yc:1osHii MOHOTOHHOCTH 15 3aBHCHMOCTH
yucia Pates OT reoMeTpHH NPH OCECHMMETPHYHOI KOHBEKUMH B LMJIMHIPE H NPH TPEXMEpPHOIl
KOHBEKIHH B MPAMOYro/ibHOM 06beMe HCMOIL3YeTCst METOA napaMeTpHyeckoro auddepenunposaHis.
Hcenenyetcs Taxxke 3aBHCHMOCTh KpHTHYecKoro yncna Pazes ot uncna Hycceasra.





